
Building Grid Layouts Based on a Framework 1 / 12 Heather Floyd

Building Grid Layouts

Based on a Framework

Talk by Heather Floyd @ uWestFest March 2016

www.HeatherFloyd.com - @HFloyd

Outline, Notes, & Code Snippets

Welcome

What I mean by “Framework”:

 Strongly-typed models for Doctypes (ModelsBuilder – now built into core (v. 7.4))

 Scandza Framework (proprietary customized models to handle Umbraco things like Media Images +

collection of personal “helper” library functions)

 Also – just a standardized system of development (even if you aren’t using either of the above)

The Umbraco Grid Control

Main Grid Benefits

 A balance between editor power and designer/developer control (proper rendering of HTML/CSS)

 Easier for editors to get fancy customized page designs without having to mess with manually adding HTML

and CSS styles (like in an RTE)

 Designed for mobile responsiveness. Supports Bootstrap out-of-the-box, but several other renderers are

available, plus the render is completely customizable by developer.

A Brief History of the Grid

 Originally created by Antoine from Barcelona Agency LECOATÍ

 Incorporated into the Core for Umbraco version 7.2 (Dec 2014)

 Updated for Umbraco version 7.4 (Feb 2016)

http://www.heatherfloyd.com/

Building Grid Layouts Based on a Framework 2 / 12 Heather Floyd

Grid Structure

“Grid Control” Datatype added to a Document Type

Layout > Sections > Rows > Columns > Widgets (Controls)

Developer configures which Sections and what Row Configurations (arrangements of columns) are

available for editors to use. Also, which widgets can be used in each row/column.

On a grid control on a Content node, the entire grid is stored as a JSON blob. This is somewhat

convenient, but also poses specific challenges (discussed later).

Design & Specification Challenges - “Think in a Grid”

 Designers need to define page design portions as rows/columns/widgets.

 Can end up with very complex row configurations and widgets if not managed. (Photoshop is easy – CSS

and grid architecture is hard!)

 Clients need to change their thinking from “page layouts” to “modularity”

Grid Architecture – Planning Pays Off

 Breaking up page designs into rows.

 Determining what column arrangements and row options are needed to handle the variety of page

elements.

 Defining what widgets are needed, with what properties.

Architecture Tips

Avoid multiple Sections (aka a choice of Layout) (example: “Full-width Page” & “Page with Sidebar”)

 Main reason is future-proofing… you can’t change a grid control’s Layout on a content node without

deleting ALL rows and widgets first. (YIKES!)

 If the over-all template design of the site changes (for instance, to remove any sidebar page layouts), all

the content pages will have to be manually reconfigured by editors. (See first point, above.)

 If you want to provide a sidebar… Add two grids to the DocType and have the template render the 2-

columns next to one another. Remember – it’s always easier to combine things programmatically than to

split them!

Building Grid Layouts Based on a Framework 3 / 12 Heather Floyd

Instead of this:

Do this:

How much of the Page is a Grid?

Consider whether your

template will be completely

a grid – or if only portions of

the page will be a grid.

HINT: if a widget would only

be used on a single

doctype/template, consider

not building it as a widget.

Examples:

 Content banner/slider –

Nested Content used

on the Doctype instead

 Twitter bar – used only

on Homepage, requires

no editor interaction

Issue: Does it need to be

inserted in the middle of grid

content? Consider a macro

(which can be inserted as a

grid widget) to do the

rendering rather than a

custom widget with

properties.

Building Grid Layouts Based on a Framework 4 / 12 Heather Floyd

Pick the appropriate number of row configuration options.
Balance between flexibility & complexity.

This will be based somewhat on the designs – so you can see how giving the designer some

parameters could be helpful…

Consolidate Widgets

If different-looking page elements have the same editable components (for example: Header,

Description, Image, Link), create one widget and include a “Layout Style” drop-down (Image on left,

image on right, image on top, background image, etc.) and render appropriately.

Same widget with different “Layout Styles”:

Creating Complex Widgets – without Angular knowledge

You can certainly build all your custom widgets in Angular, so you JavaScript fiends – have at it.

Check out Marc Stöcker’s UK Festival 2015 talk for more about how to do that [see Resources, below,

for link]

I’m really a back-end focused developer with slender Angular skills, AND I like to keep things as

standard and simple as possible, so I use LeBlender for my customizing needs. [see Resources for link]

Building Grid Layouts Based on a Framework 5 / 12 Heather Floyd

Even if you plan to build with

Angular, install LeBlender just for

the back-office area which makes

it easy to see all the configured

widgets, and do things like update

their icon or name without having

to muck about in a potentially

large JSON config file.

LeBlender Custom Widgets

Easy to add any DataType as a property on the grid widget.

Process options via back-end cshtml files.

Built-in support for “1-to-many” objects (like slides) or use something like Nested Content in a custom

Datatype (good if you have “widget-level” (like a header or display option) properties as well).

Using Strongly-typed models with Grid

Skybrud.Umbraco.GridData

Grid properties can be returned as a “Grid DataModel object [see Resources for link]

Customized Doctype model:

Building Grid Layouts Based on a Framework 6 / 12 Heather Floyd

Used in a View:

(GetTypedGridHtml  Use the render file specified)

Custom Models in Widget Editors

Inside grid editor .cshtml files you can use your custom models – ex: MediaImage, Nested Content,

Content Picker -> custom DocType model

Building Grid Layouts Based on a Framework 7 / 12 Heather Floyd

Elegant Error-Handling for Grid widgets

Properties can change (esp. during active development) test each one and react appropriately.

If content exists, then you add a new property, and try to access it in the Editor rendering, that old

content will show an error (because the value is missing from the JSON blob.)

You probably don’t want to blow up the widget display if a non-needed property is missing, but you

might want to log it, at least, so the content node could be updated later.

“Grid on Steroids” - Row Options & Customizing the Grid Rendering File

Things you can test for while rendering the grid control in a view:

 Layout/Section names

 Row names/options

 Widgets used inside a row (which ones, quantity of widgets in a row)

 Properties on the widgets used

Building Grid Layouts Based on a Framework 8 / 12 Heather Floyd

Things I have customized

Adding the row layout name as a css class to the row div

Added a row option to switch the container class for that row from standard to full-bleed

Building Grid Layouts Based on a Framework 9 / 12 Heather Floyd

Adding background color + background image options, which, if combined, created a colored

overlay on the background image

Building Grid Layouts Based on a Framework 10 / 12 Heather Floyd

Added Support for Multiple ‘Classes’ on a row

Changed the way the “classes” attribute is compiled so that multiple separate properties could

append different classes (just by adding a number to “class” for the option)

Reusable content-filled widgets

Involves custom DocType for the widget (with a grid control on it) and a Content area for them to be

stored…

And a DataType picker for the widget that is used on pages with grid controls:

Then the renderer looks for that control type and renders the external node’s grid widget in its place:

Building Grid Layouts Based on a Framework 11 / 12 Heather Floyd

Most design challenges can be solved – with some creativity

“Gotchas” to be aware of

Courier 2.52.3 – The latest version handles things a lot better, but if you have highly customized

widgets using custom datatypes (like Nested Content), you will want to do some testing, and might

need to write some data resolvers to help those through the Couriering. All the “standard” grid

controls are completely supported at this time.

Examine – Grid content is stored in a JSON blob, which includes the property information (so a search

for a word which you use as a property name will turn up that page, even if that word isn’t visible as

content). Workarounds: Customize the data that goes into the Index (with some help from our friend

the Skybrud. GridDataModel), or use a full-text indexing solution.

Check out Marc Stöcker’s UK Festival 2015 talk for more details on these and other possible issues.

Also, Umbraco and Courier are improving rapidly, so do some testing of your own.

Conclusion

If your client is demanding page design flexibility, and you’d like to reduce the number of separate

templates you are creating, the grid is an excellent option, and can fit right into your current

development processes.

Building Grid Layouts Based on a Framework 12 / 12 Heather Floyd

Resources

Recommended Code & Packages

LeBlender

https://our.umbraco.org/projects/backoffice-extensions/leblender/

Skybrud. GridDataModel

https://github.com/skybrud/Skybrud.Umbraco.GridData

Nested Content

https://our.umbraco.org/projects/backoffice-extensions/nested-content/

Full-Text Indexer for Examine

https://fulltextsearch.codeplex.com

Recommended Info

Our.Umbraco Documentation for “Grid Layout” Property Editor

https://our.umbraco.org/documentation/getting-started/backoffice/property-editors/built-in-

property-editors/grid-layout

“The Grid: Structure, Settings, Editors and Use Cases” by Marc Stöcker @ UK Festival October 2015

https://www.youtube.com/watch?v=QvzwilqYOp4

Blog posts about Grid evolution & related Umbraco releases

Umbraco 7.2 grid updates

http://umbraco.com/follow-us/blog-archive/2014/6/26/umbraco-72-grid-updates/

Umbraco 7.2.0 beta out now

http://umbraco.com/follow-us/blog-archive/2014/10/28/umbraco-720-beta-out-now/

Umbraco 7.2 Beta 2

http://umbraco.com/follow-us/blog-archive/2014/11/10/umbraco-72-beta-2/

Umbraco 7.2 released

http://umbraco.com/follow-us/blog-archive/2014/12/4/umbraco-72-released/

The future of Grid Layouts

http://umbraco.com/follow-us/blog-archive/2015/11/17/the-future-of-grid-layouts/

7.4.0 beta: It’s like a whole new backoffice

http://umbraco.com/follow-us/blog-archive/2015/12/17/740-beta-it-s-like-a-whole-new-backoffice/

Our Major Minor - introducing Umbraco 7.4

http://umbraco.com/follow-us/blog-archive/2016/2/11/our-major-minor-introducing-umbraco-74/

https://our.umbraco.org/projects/backoffice-extensions/leblender/
https://github.com/skybrud/Skybrud.Umbraco.GridData
https://our.umbraco.org/projects/backoffice-extensions/nested-content/
https://fulltextsearch.codeplex.com/
https://our.umbraco.org/documentation/getting-started/backoffice/property-editors/built-in-property-editors/grid-layout
https://our.umbraco.org/documentation/getting-started/backoffice/property-editors/built-in-property-editors/grid-layout
https://www.youtube.com/watch?v=QvzwilqYOp4
http://umbraco.com/follow-us/blog-archive/2014/6/26/umbraco-72-grid-updates/
http://umbraco.com/follow-us/blog-archive/2014/10/28/umbraco-720-beta-out-now/
http://umbraco.com/follow-us/blog-archive/2014/11/10/umbraco-72-beta-2/
http://umbraco.com/follow-us/blog-archive/2014/12/4/umbraco-72-released/
http://umbraco.com/follow-us/blog-archive/2015/11/17/the-future-of-grid-layouts/
http://umbraco.com/follow-us/blog-archive/2015/12/17/740-beta-it-s-like-a-whole-new-backoffice/
http://umbraco.com/follow-us/blog-archive/2016/2/11/our-major-minor-introducing-umbraco-74/

